Supervised Collaborative Filtering Based on Ridge Alternating Least Squares and Iterative Projection Pursuit
نویسندگان
چکیده
منابع مشابه
Statistical Properties of Alternating Least Squares Estimators of a Collaborative Filtering Model
Recommender systems are emerging as important tools for improving customer satisfaction by mathematically predicting user preferences. Several major corporations including Amazon.com and Pandora use these types of systems to suggest additional options based on current or recent purchases. Netflix uses a recommender system to provide its customers with suggestions for movies that they may like, ...
متن کاملGradient Projection Iterative Sketch for Large-Scale Constrained Least-Squares
We propose a randomized first order optimization algorithm Gradient Projection Iterative Sketch (GPIS) and an accelerated variant for efficiently solving large scale constrained Least Squares (LS). We provide the first theoretical convergence analysis for both algorithms. An efficient implementation using a tailored linesearch scheme is also proposed. We demonstrate our methods’ computational e...
متن کاملIterative Reweighted Least Squares ∗
Describes a powerful optimization algorithm which iteratively solves a weighted least squares approximation problem in order to solve an L_p approximation problem. 1 Approximation Methods of approximating one function by another or of approximating measured data by the output of a mathematical or computer model are extraordinarily useful and ubiquitous. In this note, we present a very powerful ...
متن کاملLeast Squares Filtering
A general estimation model is defined in which two observations are available; one being a noisy version of the transmitted signal, while the other is a noisy-filtered and delayed version of the same transmitted signal. The delay and the filter are unknown quantities that must be estimated. An adaptive system, based on the least squares (LS) estimation criterion, is proposed in order to perform...
متن کاملData filtering based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition
This paper focuses on the iterative identification problems for a class of Hammerstein nonlinear systems. By decomposing the system into two fictitious subsystems, a decomposition based least squares iterative algorithm is presented for estimating the parameter vectors in each subsystem. Moreover, a data filtering based decomposition least squares iterative algorithm is proposed. The simulation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2017
ISSN: 2169-3536
DOI: 10.1109/access.2017.2688449